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We present an exact three-dimensional solitonic solution to a sine-Gordon-type Euler-Lagrange equation that
describes a configuration of a three-dimensional vector field n̂ constrained to a surface p-vortex, with a
prescribed polar tilt angle on a planar substrate and escaping into the third dimension in the bulk. The solution
is relevant to characterization of a schlieren texture in nematic liquid-crystal films with tangential �in-plane�
substrate alignment. The solution is identical to a section of a point defect discovered many years ago by Saupe
�Mol. Cryst. Liq. Cryst. 21, 211 �1973��, when latter is restricted to a surface.

DOI: 10.1103/PhysRevE.79.041702 PACS number�s�: 61.30.Jf, 61.30.Dk

I. INTRODUCTION

Topological defects are central to a complete description
of ordered phases of condensed matter, ranging from super-
conductors to liquid crystals �1�. Defects’ energetics controls
the stability of the ordered state to thermal fluctuations �2,3�,
random material heterogeneities �4�, and external perturba-
tions �5�. A complete rigorous classification �6� is now avail-
able for most bulk ordered states.

This has been particularly fruitful in understanding a rich
variety of topological defects that are found in liquid-crystal
phases. However, in many physical contexts, as, for example,
arising in liquid crystals confined inside a thin display cell,
much of the physics is controlled by a substrate interaction
which competes with the bulk energetics �1�. In such surface-
dominated situations, only an incomplete understanding of
defects structure and stability is available.

One important and extensively studied example of this
type discovered by Meyer �7� is that of a uniaxial nematic
liquid crystal confined to a thin long capillary with a homeo-
tropic alignment at the cylindrical surface. The resulting
boundary condition forces an integer winding of the nematic
director field, which for a two-dimensional �xy� field would
trap a vortex line along the axis of the capillary. However,
such defect is unstable for a three-dimensional �3D� director
field and away from the boundary exhibits an escape into the
third dimension, removing the line singularity as described
by Meyer’s solution �7�.

A familiar schlieren surface texture seen in phase contrast
microscopy is a hallmark of nematic liquid crystals, reflect-
ing surface-induced disclinations �vortices in the nematic di-
rector field�. The texture details, e.g., appearance of integer
versus half-integer vortices, have been suggested to distin-
guish between the uniaxial and biaxial nematic states �8,9�.
New advanced bulk imaging techniques, such as, for ex-
ample, the fluorescence confocal polarizing microscopy,
have also allowed imaging of the full three-dimensional tex-
tures associated with such surface defects �10�.

Motivated by the above discussion, here we consider a
problem of a 3D nematic with a planar �parallel� surface
alignment, with an integer vortex imposed on a substrate, as
illustrated in Fig. 1. In contrast to the long capillary case �7�
that clearly exhibits translational invariance along its axis,
reducing it to one dimension �1D�, here the system is mani-

festly three-dimensional �two-dimensional �2D�, once azi-
muthal symmetry is included� and therefore in principle con-
siderably more complicated.

Here we present a derivation of an exact solution to the
single Frank elastic constant Euler-Lagrange �E-L� equation
that describes a bulk texture induced by a surface
2�p-vortex, with p as the integer azimuthal vortex winding
number. It is described in terms of the polar angle ��r� ,z�
=�s�z /r�� of the director field n̂�x� that we find to be given
by

�s�t� = 2 arccot��t + �t2 + 1�p� . �1�

Illustrated in Fig. 2 for p=1, the bulk texture is a conical
soliton giving the nematic director’s escape into the third
dimension away from the imposed surface 2�p-vortex with a
strong planar alignment.

The director n̂�x� configuration corresponding to Eq. �1�
coincides with a section of the Saupe’s point p-defect �11�

FIG. 1. �Color online� A nematic director field n̂�x� constrained
to a 2� vortex on a surface z=0 with a planar alignment rendered in
3D in �a� and in a 2D projection in �b�. The corresponding bulk
texture configuration n̂�x� that minimizes the Frank energy is cal-
culated analytically in this paper and is illustrated in Fig. 2.
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�tan � /2= �tan � /2��p�, with � as a polar angle of the spherical
coordinates� when restricted to a subspace above a planar
substrate. For p=1 the above result reduces to a well-known
simple texture, given by half of the hedgehog �skyrmion�
configuration, n̂�x�= x̂. Application of Saupe’s p=1 defect to
a surface vortex problem was also previously explored by
Kleman �12� and was shown to satisfy the simplest homoge-
neous boundary conditions arising from a model pinning po-
tential �12�.

To summarize our contributions, we present a derivation
�in cylindrical coordinates, mapping the Euler-Lagrange
equation to that of a dissipative particle with a time-
dependent mass� of Saupe’s solution �Eq. �1��. This approach
is likely extendable �even if approximately� to a study of
other interesting problems of surface defects, where the re-
duction to Saupe’s point defect solution no longer holds. Our
slight generalization of Saupe’s solution allows us to discuss
and connect to weak and strong anchorings. Finally, we
present an analysis of the energetics, comparing the conical
soliton escape to other competing textures. We discover a
counterintuitive dependence of the p-vortex energy on p,
showing that it is asymptotically linear in p, in contrast to the
standard p2 dependence. This has important implications for
the stability of p�1 surface vortices over their fission into p
lower winding �p=1� vortices.

II. MODEL

We consider a 3D model of a nematic liquid crystal, char-
acterized by a nematic unit director field, n̂�x�, with x
= �r� ,z�. The energy is given by a Hamiltonian

H = Hel + Hs, �2�

where Hel is the bulk elastic energy of the Frank model

Hel =
1

2
� d2r�dz�K1�� · n̂�2 + K2�n̂ · �� � n̂��2

+ K3�n̂ � �� � n̂��2	 , �3�

and Hs is the surface pinning energy, localized at z=0,

Hs =� d2r�dzVs�r����z��ẑ · n̂�2, �4�

with ẑ as the surface normal. In the single elastic constant
approximation, K1=K2=K3=K, the elastic energy reduces to

Hel =
K

2
� d2r�dz��n̂�2. �5�

In above we have dropped the boundary terms as they do not
affect the E-L equation. Parametrizing the unit director field

n̂ = �sin � cos �,sin � sin �,cos �� �6�

in terms of polar and azimuthal angles � and �, Hel reduces
to

Hel =
K

2
� d2r�dz�����2 + sin2 �����2� . �7�

We can include surface pinning through a boundary condi-
tion on n̂�r� ,z=0�= n̂0�r��, finding the corresponding solu-
tion and then minimizing over n̂0�r�� in the presence of
Vs�r��.

We focus on the solution n̂�x� subject to a constraint of a
2�p-vortex �p�Z� at z=0. The 2�p surface winding is im-
posed by taking

��r�,z = 0� = p� + �0, �8�

where �=arctan�y /x� is the azimuthal angle of the cylindri-
cal coordinate system x= �r� cos � ,r� sin � ,z�. The arbi-
trary constant angle �0 gives a family of textures induced by
spiral surface defects for 0��0�� /2. These interpolate be-
tween a pure splay surface “aster” defect for �0=0, �illus-
trated in Fig. 1�a�� and a pure bend surface “vortex” defect
for �0=� /2.

The resulting elastic energy is then given by

Hel =
K

2
� d2r�dz
����2 +

p2

r�
2 sin2 �� , �9�

leading to the Euler-Lagrange equation that determines the
texture configuration ��x�;

�2� −
p2

2r�
2 sin 2� = 0. �10�

Focusing for simplicity on azimuthally symmetric bound-
ary conditions, we search for a �-independent solution
��r ,z�, satisfying

r2�r
2� + r�r� + r2�z

2� −
p2

2
sin 2� = 0, �11�

with a surface constraint ��r ,z=0�=�0�r�. We have simpli-
fied the notation by denoting r��r.

III. SOLUTION OF THE EULER-LAGRANGE EQUATION

Despite the fact that the E-L equation, Eq. �11� is nonlin-
ear and two dimensional, its one- �and periodic array-� soli-
ton solution can be found exactly �11�. The intuition for the

FIG. 2. �Color online� Exact conical soliton solution �here pro-
jected onto z-r� plane� of the nematic director field, n̂�x�, describ-
ing escape into the third dimension of a surface 2� vortex.
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form of the solution can be obtained by neglecting the
r-derivative terms and then noting that the resulting equation
is of a standard 1D sine-Gordon-type along z, with a period
�. It thus admits a soliton solution connecting tilt angle
��r ,z=−	�=� to ��r ,z= +	�=0 with the soliton width at
the transverse distance r from the vortex given by 
z�r�=r.

A. Exact conical soliton solution

Motivated by the above observation and by the transla-
tional invariance of the E-L equation along z, we search for a
soliton solution of the form

��r,z� � �s z + z0

r
� . �12�

We note that this restricted form precludes a study of other
than a constant boundary condition at z=−z0. Since in gen-
eral the symmetry dictates a nontrivial radial variation in the
director tilt angle at the surface with the distance r from the
vortex, we anticipate that the above form of the solution is an
exact description only for an infinitely strong planar align-
ment on a substrate at z=−z0=0. For a finite planar surface
anchoring, given large azimuthal strain near the vortex, we
expect a meron configuration with �0�r��0 in the vicinity of
the vortex �near r=0� and growing to � /2 with increasing
distance r from it. As we will see below, the radial surface
variation �0�r����r ,z=0� can be qualitatively captured by
the solution �s�z0 /r� at z=0, by adjusting z0. While this
single degree of freedom �z0� is in principle insufficient to
capture an arbitrary form of the surface boundary condition,
�0�r�, we proceed to explore this class of solutions �13�. We
expect it to be a good approximation for strong planar an-
choring, characterized by a vanishing z0 and corresponding
to �0�r��� /2 for nearly all r, excluding a small core region
of radius z0. We will treat the weakly anchored case in a
complementary way.

As a function of the scaling variable t= �z+z0� /r, the E-L
equation simplifies to

m�t��̈s + ��t��̇s −
p2

2
sin 2�s = 0, �13�

where

m�t� = t2 + 1, �14�

��t� = t . �15�

Solutions of Eq. �13� can be most easily obtained by its
identification with Newton’s equation for a particle at posi-
tion ��t� at time t, moving in a periodic potential V���
= p2

4 cos 2� and characterized by time-dependent mass and
friction coefficients, m�t� and ��t�, respectively. This type of
identification is quite analogous to a standard sine-Gordon
model, where, in contrast, the fictitious particle has a con-
stant mass and no friction. In this latter case the solution is
easily obtained by a guaranteed existence of an integral of
motion, energy of the particle, which reduces the solution to
a single integral. In our problem the time dependence of the
mass and finite friction at first sight would be expected to

preclude the existence of such “conservation of energy” in-
tegral of motion. However, a key observation is that the two
effects can exactly compensate each other if the condition

��t� = 1
2ṁ�t� �16�

is satisfied �as it is in our problem� and leads to an “energy”
conservation law

d

dt

1

2
m�t��̇s

2 +
p2

4
cos 2�s� = 0. �17�

Indeed this is guaranteed by the fact that the E-L Eq. �10�
came from a minimization �of Hel� principle.

The resulting integral of “motion,”

1

2
m�t��̇s

2 +
p2

4
cos 2�s =

p2

4
E , �18�

with p2E /4 as the fictitious particle’s energy, then easily al-
lows us to reduce the problem to a single integral

�
t0

t

dt�
p

�m�t��
= − �2�

�/2

�s d��
�E − cos 2��

, �19�

where in above, we have made a choice of the negative
square root. The parameter t0 defined by �s�t0�=� /2 deter-
mines the tilt angle �0 at the boundary at z=−z0. The other
constant of “motion,” E, is also crucial to the nature of the
solution. It is quite clear that for a half-infinite space bound-
ary conditions �see Fig. 1� E must be chosen to be E=1− so
that the solution is a single soliton in t. In the mechanics
analogy it corresponds to a particle at t=−	, starting out at
�=�, with the energy just equal to the potential energy, i.e.,
with an infinitesimally vanishing initial velocity, rolling
down the hill during −	� t� t0 and then climbing back up to
the top at �=0 as t→ +	.

Using m�t�= t2+1, Eq. �19� is easily integrated,

�
t0

t

dt�
p

�t�2 + 1
= − �

�/2

�s d��

sin ��
,

p ln
 t + �t2 + 1

t0 + �t0
2 + 1

� = ln cot��s/2� , �20�

and leads to our main result

�s�t� = 2 arccot
 t + �t2 + 1

t0 + �t0
2 + 1

�p� , �21�

illustrated in Fig. 3. The corresponding director field texture
is illustrated in Fig. 2.

The solution satisfies the Euler-Lagrange equation with a
uniform tilt �0 boundary condition,

��r,z = − z0� = �0 = 2 arctan��t0 + �t0
2 + 1�p� , �22�

on the z=−z0 surface. Clearly, �0 is also the asymptotic tilt
angle at large r �vanishing t�, and in terms of it, the solution
can be equivalently written as
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�s�t� = 2 arccot
cot
�0

2
�t + �t2 + 1�p� . �23�

This is illustrated for p=1 in Fig. 3.
We focus on the asymptotically planar alignment, ��r

→	 ,z�=�0=� /2, corresponding to t0=0. On the physical
surface boundary at z=0, the tilt angle is then given by a
nontrivial function of r,

��r,z = 0� = �0�r� = �s�z0/r� �24�

=2 arccot��z0/r + �z0
2/r2 + 1�p� , �25�

that describes the escape into the third dimension �vanishing
�0�r�� on the surface z=0 inside a disk of radius z0, as illus-
trated in Fig. 4. As anticipated above, z0 allows only a single
parameter adjustment of the boundary condition, physically
controlled by Vs �13�. An infinitely strong surface anchoring,
Vs→	, gives a perfectly planar alignment, �0�r�=� /2, char-
acterized by z0→0.

We note, however, that a more general boundary condi-
tion, �0�r� can be imposed by generalizing above exact solu-

tion to an r-dependent z0�r�. Although the resulting �s(�z
+z0�r�� /r) is no longer an exact solution to the E-L equation,
for a small �rz0 it is an accurate approximation and can be
employed as a good variational ansatz.

B. Pontryagin index of conical solitons

The solitonic solutions �p�x�=�s�t�, Eq. �23� �indexed by
p�, together with �p�x�= p�, give the unit director field n̂p�x�
according to parametrization �6�. When restricted to a two-
dimensional closed surface, e.g., a sphere S2

x in coordinate
space x, n̂p�x̂� gives a mapping of this coordinate sphere S2

x

into another sphere S2
n̂, where n̂ “lives.” Such mappings fall

into topologically distinct classes that form the second ho-
motopy group, H2�Ss�=Z, corresponding to distinct ways of
wrapping a coordinate sphere around a target space sphere.
The classes are characterized by the Pontryagin topological
index

Q =
1

8�
� dak�ijkn̂ · ��in̂ � � jn̂� , �26�

where dak is the kth component of the infinitesimal surface
element pointing along the local surface normal. We have
computed Q for our director field solutions n̂p�x� and found
that Q= p.

C. Weak surface pinning (small �) analysis

For weak surface pinning the tilt angle �0�r� is small,
corresponding to a large z0, and for a large range 0�r�z0,
solution �23� reduces to

��t� =
�0

�t + �t2 + 1�p

=�0��t2 + 1 − t�p. �27�

We can compare this result with that obtained by studying
the linearized �14� Euler-Lagrange equation,

2 4 6 8 10
r
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0.6

0.8
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1.2

1.4

Θ0�r�

FIG. 4. �Color online� Surface tilt angle �0�r� for a �p=1� 2�
vortex, showing surface escape into the third dimension �a meron�,
confined to a radius z0.
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FIG. 3. �Color online� Solitonic p=1 solution from Eq. �21� for
�a� t0=0, corresponding to a perfect planar alignment, �0=� /2 at
z=−z0, and �b� t0=−0.5, corresponding to a uniform tilt of �0

=1.11 radians at the z=−z0 boundary.
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r2�r
2��r,z� + r�r��r,z� + r2�z

2��r,z� − p2��r,z� = 0. �28�

This differential equation is separable. Letting ��r ,z�
=R�r�Z�z�, it becomes

R�

R
+

1

r

R�

R
−

p2

r2 � = −
Z�

Z
= − k2, �29�

where the sign of the constant −k2 is chosen negative to
ensure a well-behaved solution that decays at large z. Keep-
ing only the decaying solution, Z�z� is given by

Z�z� = Z0e−kz. �30�

Noting that the equation for R�r� is the Bessel equation of
order p in variable kr, the full solution of the E-L equation
for weak pinning is given by

��r,z� = �
0

	

dkakJp�kr�e−kz, �31�

where the coefficients ak are determined by the boundary
condition at z=0, namely, by �0�r�=��r ,z=0�. Using the or-
thogonality of Bessel functions, these are given by

ak = k�
0

	

drr��r,0�Jp�kr� . �32�

We note that, in contrast to the full solitonic solution, Eq.
�21� �where we were only able to impose a boundary condi-
tion with a specific r dependence, �0�r�=�s�z0 /r�, displayed
in Fig. 4�, here we can obtain a solution ��r ,z� for an arbi-
trary r-dependent boundary condition ��r ,z=0�=�0�r�.

To compare to the full solution, we choose a constant
boundary condition �0, for which

ak = k�
0

	

drr�0Jp�kr� �33�

=�0p/k , �34�

where a convergence factor e−0+kr had to be introduced to
make the integral into �0

	dxxJp�x�e−0+x, which is well defined
and equal to p. Using these expansion coefficients ak inside
Eq. �31� we find

��r,z� = �0p�
0

	 dk

k
Jp�kr�e−kz �35�

=�0�z2

r2 + 1 −
z

r
�p

, �36�

in complete agreement with the small �0 limit �Eq. �27�� of
the full solitonic solution.

IV. ENERGETICS

A. Conical soliton energy

The bulk elastic energy corresponding to the surface vor-
tex solution, �s�t�, found above is straightforwardly com-

puted by plugging into the elastic Hamiltonian and evaluat-
ing the spatial integrals. We thereby obtain

Es
�p���0,z0� � Hel��s�t�� �37�

=
1

2
K� d2rdz
���s�2 +

p2

r2 sin2 �s� �38�

=2�p2K�
0

Lr

dr�
z0/r

	

dt sin2 �s, �39�

where we took advantage of the energy integral of “motion,”
Eq. �18� to eliminate ���s�2, and Lr is the extent of the sys-
tem in the radial direction. Using the explicit solution for
�s�t� and defining

x�t� = t + �t2 + 1,

x0 � x�t0� = �tan��0/2��1/p, �40�

we obtain

Es
�p���0,z0� = 2�K�

0

Lr

dr„x0,x�z0/r�,p… , �41�

where

„x0,x�z0/r�,p… = 2p2�
x�z0/r�

	

dx
x2 + 1

x2��x/x0�p + �x0/x�p�2 .

�42�

1. p=1 vortex energy

Specializing to the case of p=1 surface vortex, above en-
ergy is simplified and can be calculated analytically

Es
�1���0,z0� = 4�K�

0

Lr

dr�
x�z0/r�

	

dxx0
2 x2 + 1

�x2 + x0
2�2

�2�K�
0

Lr

dr„x0,x�z0/r�,1… , �43�

�2�Kz0�
z0/Lr

	

dtt−2„x0,x�t�… , �44�

where

�x0,x,1� =
�

2
x0 + x

x0
2 − 1

x0
2 + x2 − x0 arccot

x0

x
+

1

x0
arctan

x0

x
.

�45�

For a vanishing z0, x=x�z0 /r�=1, and we find

Es
�1���0,0� = 2�KLr�x0,1,1� , �46�

where

�x0,1,1� =
�

2
x0 +

x0
2 − 1

x0
2 + 12 − x0 arccot x0 +

1

x0
arctan x0

�47�

CONICAL SOLITON ESCAPE INTO A THIRD DIMENSION… PHYSICAL REVIEW E 79, 041702 �2009�

041702-5



��
8

3
x0

2, for x0 � 1

�

2
+ 2�x0 − 1� , for x0 → 1−.� �48�

Using the relation �0�x0� �Eq. �40�� to express the soliton
energy in terms of the surface tilt angle �0, we obtain the
energy Es

�1���0 ,0� of a surface 2�-vortex plotted in Fig. 5.
For asymptotic planar alignment �0�r→	�=� /2 �t0=0

and x0=1�

�1,x� =
�

2
− arctan x + arccot x . �49�

Substituting this into Eq. �44� we find

Es
�1���/2,z0� = 2�KLrg�z0/Lr� , �50�

where the scaling function g�ẑ0� is given by

g�ẑ0� =
�

2
+ arccot�ẑ0 + �ẑ0

2 + 1� − arctan�ẑ0 + �ẑ0
2 + 1�

+
1

2
ẑ0 ln ẑ0

2

1 + ẑ0
2� . �51�

2. p-vortex energy

For p�1 charge vortex, energy Es
�p� can only be evaluated

numerically. Focusing on z0=0 for simplicity,

Es
�p���0,0� = 2�KLr�x0,1,p� , �52�

where we evaluated �x0 ,1 , p� numerically and displayed
�x0 ,1 , p� / p as a function of charge p for various values of
x0 in Fig. 6. As can be seen from this figure, despite the fact
that the naive p dependence of �x0 ,1 , p� in Eq. �42� is the
standard p2 found in a 2D vortex, the p dependence coming
from the integral reduces it to an asymptotically linear one at
large p,

�x0,1,p � 1� � �1 − cos �0�p . �53�

This finding has important qualitative implication that one
winding-p surface vortex �one p-boojum� has a lower energy
than p winding-1 surface vortices �p 1-boojums�. This con-
trasts strongly with the standard 2D vortex case where a
p-vortex always has a higher energy than p unit vortices and
thus always fissions into them.

B. Competing states

We can compare the energy of the solitonic state, �s��z
+z0� /r�, discussed above with competing states illustrated in
Fig. 7. To this end, we estimate energetics by simple scaling
analysis for a system of size Lr�Lz, focusing on the strong
planar alignment, �0=� /2.

0 0.5 1. Π

2

Θ00

0.5

1.

Π

2

��Θ0�

FIG. 5. �Color online� Energy ��0 ,1 ,1� �in units of 2�KLr� of
the soliton texture due to a 2� surface vortex as a function of the
surface tilt angle �0, together with its parabolic approximation, 
�a�0

2, with a fitted to be 0.64 �appearing indistinguishable�.

0 2 4 6 8 10
p

0.6

0.7

0.8

0.9

1.0

��p��p

FIG. 6. �Color online� Energy ��0 ,1 , p� / p �in units of
2�KLr��0 ,1 ,1�� of the soliton texture due to a 2�p surface vortex
as a function of its topological charge p, displayed for surface tilt
angles �0=� /2,� /3,� /4,� /6 �top to bottom�.

FIG. 7. �Color online� Competing states for a surface 2�-vortex
boundary condition, with �a� vortex line and �b� domain-wall tex-
ture extensions into the bulk.
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1. Vortex line

One competing configuration is the “vortex line” state that
extends the surface 2� vortex into a straight vortex line with
��z�=�0=� /2, independent of z. The energy of such a state
is clearly given by

Evortex line =
K

2
� 1

r22�rdrdz � KLz ln
Lr

a
, �54�

where a is the core radius of the vortex line, set by the
coherence length.

2. Domain wall

Another possible texture is that of a 2D domain wall of
thickness a, where ��z� exhibits a uniform �i.e., r indepen-
dent� escape into the third dimension, changing from �0
=� /2 to �=0 over a microscopic distance a. The corre-
sponding energy is given by

Edomain wall =
K

2
�

0

Lr

2�rdr�
0

a

dz�/2
a
�2

� KLr
2/a , �55�

scaling with the area of the cell.

3. Conical soliton surface vortex

The energy of a conical soliton surface vortex can be
similarly estimated. We first note that by virtue of the E-L
equation, all three �z derivatives, r derivatives, and sin2 ��
contributions are comparable, and therefore we can focus on
one of them. Estimating the elastic energy based on the z
derivatives, we observe that the strain is confined to a soliton
width along z that at radius r is given by 
z�r. Thus the
estimate is quite similar to the previous case of the domain
wall but with strain spread out over region between the cones
z=r and z=0 rather than confined to a slab 0�z�a. This
leads to an estimate

Es � K�
0

Lr

2�rdr�
0

r

dz�/2
r
�2

� KLr, �56�

which agrees qualitatively with our exact computation �Eq.
�46��.

Since the conical soliton solution scales only linearly in
Lr, we conclude that the domain-wall solution �scaling as
Lr

2�, is not competitive with the other two solutions. On the
other hand, the relative competition between the vortex line
and conical soliton solution depends on the relative ratio of
Lz and Lr.

For Lz�Lr clearly vortex line is energetically more costly
and conical soliton texture is the preferred state. On the other
hand for a thin cell with width Lz=w�Lr a more detailed
analysis is required. The vortex line energy is still clearly
given by Evortex line=Kw ln

Lr

a .
To compute a conical soliton energy in a cell of a finite

width w requires an extension of the solution to a finite ge-
ometry. For a finite width cell with free and planar boundary
conditions on the top and bottom substrates, respectively, our
exact solution, �s�t� is a good description. Its energy can be
simply estimated. Examining Fig. 2, it is clear that for w

�Lr, there are two additive energy contributions of this tex-
ture. For the region 0�r�w, the contribution is identical to
that made in Eq. �56�. On the other hand, for region r�w,
the strain field is that of a 2�-vortex line with length w and
core radius w. Putting these two contributions together, we
find

Econic soliton � Kw + Kw ln
Lr

w
�57�

�Kw1 + ln
Lr

a
− ln

w

a
� � Evortex line, �58�

for cell thickness w�a.
Unfortunately, we have been unable to find an exact so-

lution for the experimentally more relevant case of non-free
�e.g., symmetric planar� boundary conditions on both sub-
strates. The difficulty has to do with the failure of a periodic
soliton solution �obtained by picking the integration constant
in Eq. �18� to be E�1 and matching its period to the width
of the cell; see the Appendix� to enforce fixed z �as opposed
to fixed t� boundary conditions.

However, a good approximate symmetric solution, illus-
trated in Fig. 8, is given by

�s
w�r,z� = �s��w/2 − �z��/r� . �59�

Describing a cell with two planar aligning substrates at z
= �w /2, its only shortcoming is a small slope discontinuity
in the z derivative at z=0 �the center plane of the cell�.
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FIG. 8. �Color online� A solitonic texture describing escape into
a third dimension of two 2� vortices confined to top and bottom
substrates of a finite width cell.
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APPENDIX: EXTENSION TO A PERIODIC AND FINITE
WIDTH SOLUTION

The analogy of the E-L equation �Eq. �18�� with a ficti-
tious particle dynamics allows an extension of the single
soliton solution to a periodic soliton array. The latter is ob-
tained by choosing the integration constant E�1, corre-
sponding to the particle starting with a vanishing velocity
and below the potential maximum. The subsequent “evolu-
tion” of �s�t� is clearly periodic in t, confined to the range
0��s�t���m, with �m= 1

2arccot�E�.
Going back to Eq. �19� we observe that the �� integral can

be related to the Legendre form of the elliptic integral of the
first kind,

F��,k� = �
0

� d��
�1 − k2 sin2 ��

. �A1�

Thus our solution can be expressed in terms of the Jacobi
elliptic function sn�� ,k� defined by

sn�F��,k�,k� = sin � . �A2�

sn�t ,k� is an odd periodic function resembling a smoothed
out square wave. For k�1 it interpolates between a single
soliton for k=1+ �half a period of a square wave� and
k−1 sin kt for k�1. For k�1 the period of sn�t ,k� is given by
2F�sin−1�1 /k� ,k�.

To establish a direct relation we change variables ��=��
−� /2, finding

F��,k� = sn−1�sin �,k� �A3�

=�
�/2

�+�/2 d��
�1 − k2 cos2 ��

�A4�

=
�2

k
�

�/2

�+�/2 d��
�Ek − cos 2��

, �A5�

where Ek= �2−k2� /k2. In this notation, Eq. �19� becomes

�
t0

t

dt�
1

�t�2 + 1
= − �2�

�/2

� d��
�E − cos 2��

, �A6�

ln
 t + �t2 + 1

t0 + �t0
2 + 1

� = − kEsn−1�sin �� − �/2�,kE� �A7�

=kEsn−1�cos �,kE� , �A8�

where kE=�2 / �1+E�, and we used the fact that sn�� ,k� is an
odd function of �. Thus the periodic conical soliton solution
is given by

�s�t,k� = arccos�sn
1

k
ln t + �t2 + 1

t0 + �t0
2 + 1

�,k�� , �A9�

with k=1+ giving our earlier single soliton solution �Eq.
�21��.

One might hope to use this solution to model a finite
thickness, w, symmetric liquid-crystal cell with two bound-
aries inducing a symmetric �about z=w /2� director rotation
from �=� /2 to 0 and back to � /2. Naively, this maybe done
by choosing the value of k such that the period matches the
cell thickness, w. Although this is possible for standard 1D
solitonic problems, because here the solution is periodic in
t= �z+z0� /r �stemming from the fact that we are dealing with
a 2D problem� and not in z, solution �A9� cannot be used to
model a cell with symmetric boundaries at fixed z=0 and z
=w. A more general class of solutions is necessary but is
currently unavailable.
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